3.1243 \(\int \frac{(A+C \cos ^2(c+d x)) \sqrt{\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=185 \[ \frac{(3 A-5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(A+C) \sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

[Out]

(2*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(a^(3/2)*d
) + ((3*A - 5*C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos
[c + d*x]]*Sqrt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)*
Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.556765, antiderivative size = 185, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.189, Rules used = {4221, 3042, 2982, 2782, 205, 2774, 216} \[ \frac{(3 A-5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(A+C) \sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(2*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(a^(3/2)*d
) + ((3*A - 5*C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos
[c + d*x]]*Sqrt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)*
Sqrt[Sec[c + d*x]])

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\left (A+C \cos ^2(c+d x)\right ) \sqrt{\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{A+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx\\ &=-\frac{(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{2} a (3 A-C)+2 a C \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left ((3 A-5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}+\frac{\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left ((3 A-5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}-\frac{\left (2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^2 d}\\ &=\frac{2 C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{a^{3/2} d}+\frac{(3 A-5 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{2 \sqrt{2} a^{3/2} d}-\frac{(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.65088, size = 245, normalized size = 1.32 \[ -\frac{i \cos ^3\left (\frac{1}{2} (c+d x)\right ) \left (i (A+C) \left (\sin \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{3}{2} (c+d x)\right )\right ) \sqrt{\sec (c+d x)} \sec ^2\left (\frac{1}{2} (c+d x)\right )+\sqrt{2} e^{-\frac{1}{2} i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{1+e^{2 i (c+d x)}} \left (-\sqrt{2} (3 A-5 C) \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )+4 C \sinh ^{-1}\left (e^{i (c+d x)}\right )-4 C \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )\right )\right )}{2 d (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((-I/2)*Cos[(c + d*x)/2]^3*((Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*
x))]*(4*C*ArcSinh[E^(I*(c + d*x))] - Sqrt[2]*(3*A - 5*C)*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2
*I)*(c + d*x))])] - 4*C*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]))/E^((I/2)*(c + d*x)) + I*(A + C)*Sec[(c + d*x)
/2]^2*Sqrt[Sec[c + d*x]]*(Sin[(c + d*x)/2] - Sin[(3*(c + d*x))/2])))/(d*(a*(1 + Cos[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.175, size = 283, normalized size = 1.5 \begin{align*}{\frac{\sqrt{2} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}-1 \right ) }{4\,d{a}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( -A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) -4\,C\sqrt{2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \sin \left ( dx+c \right ) -C\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) +3\,A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) +A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}-5\,C\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) +C\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x)

[Out]

1/4/d*2^(1/2)/a^2*(1/cos(d*x+c))^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(-A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
cos(d*x+c)-4*C*2^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*sin(d*x+c)-C*2^(1/2)*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+3*A*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)+A*2^(1/2)*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)-5*C*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)+C*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^3*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 42.2666, size = 579, normalized size = 3.13 \begin{align*} -\frac{\sqrt{2}{\left ({\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 3 \, A - 5 \, C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) + 2 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (A + C\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 8 \,{\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 3*A - 5*C)*sqrt(a)*arctan(sqrt(2)*sqr
t(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + 2*sqrt(a*cos(d*x + c) + a)*(A + C)*sqrt(cos
(d*x + c))*sin(d*x + c) + 8*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*
sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)